































## **Kinetics**

- □ Study of reaction rate
- Determines number of steps involved
- Determines mechanism of reaction
- Identifies "rate-limiting" step







10/9/2019

















| Enzyme                 | Substrate              | <i>К</i> <sub>m</sub> (тм) |
|------------------------|------------------------|----------------------------|
| Hexokinase (brain)     | ATP                    | 0.4                        |
|                        | D-Glucose              | 0.05                       |
|                        | D-Fructose             | 1.5                        |
| Carbonic anhydrase     | HCO <sub>3</sub>       | 26                         |
| Chymotrypsin           | Glycyltyrosinylglycine | 108                        |
|                        | N-Benzoyltyrosinamide  | 2.5                        |
| $\beta$ -Galactosidase | D-Lactose              | 4.0                        |
| Threonine dehydratase  | L-Threonine            | 5.0                        |



## Applications of MM equation

- □ Interpreting Vmax and Km:
- □ Vmax varies greatly from one enzyme to another
- Vmax is an expression of the upper limit efficiency of operation for a given amount of an enzyme

## EXAM-TYPE QUESTION

In deriving the Michaelis-Menten equation for enzyme-mediated reactions, which of the following did we assume?

- a. The concentration of S is reduced by formation of ES.
- b. The rate of the reaction is limited by ES dissociation to form free enzyme and substrate S.
- c. ES breakdown to form E + S is slower than ES breakdown to form E + P.
- d. An intermediate complex, EP is involved in the reaction.
- e. The reverse reaction is insignificant\*







| Values of <i>k</i> <sub>cat</sub> (Turnove<br>for Some Enzymes | r Number)                      |
|----------------------------------------------------------------|--------------------------------|
| Enzyme                                                         | $k_{\rm cat}~({\rm sec}^{-1})$ |
| Catalase                                                       | 40,000,000                     |
| Carbonic anhydrase                                             | 1,000,000                      |
| Acetylcholinesterase                                           | 14,000                         |
| Penicillinase                                                  | 2,000                          |
| Lactate dehydrogenase                                          | 1,000                          |
| Chymotrypsin                                                   | 100                            |
| DNA polymerase I                                               | 15                             |
| Lysozyme                                                       | 0.5                            |



| Reaction Catalyzed                                                                                             | $K_{\rm M}({ m mol/L})$                                                                                                                                                                                                                                                                                                                                                                                                                                      | $k_{\rm cat}({\rm s}^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $k_{\rm cat}/K_{\rm M} \; [({\rm mol/L})^{-1}  {\rm s}^{-1}]$                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ac–Phe–Ala $\xrightarrow{H_{2}O}$ Ac–Phe + Ala                                                                 | $1.5	imes10^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Phe-Gly $\xrightarrow{H_2O}$ Phe + Gly                                                                         | $3	imes 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.7	imes10^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Tyrosine + tRNA → tyrosyl-tRNA                                                                                 | $9\times 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $8.4	imes10^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Cytidine 2', 3' $\xrightarrow{H_3 \circ}$ cytidine 3'-<br>cyclic phosphate $\xrightarrow{H_3 \circ}$ phosphate | $7.9	imes10^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                            | $7.9	imes10^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.0	imes10^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $HCO_3^- + H^+ \longrightarrow H_2O + CO_2$                                                                    | $2.6	imes10^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                            | $4	imes 10^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.5	imes10^7$                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H <sub>2</sub> O                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 1 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 4 1 4 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                | Reaction Catalyzed         Ac-Phe-Ala $\overset{H_{2}O}{\longrightarrow}$ Ac-Phe + Ala         Phe-Gly $\overset{H_{2}O}{\longrightarrow}$ Phe + Gly         Tyrosine + tRNA       tyrosyl-tRNA         Cytidine 2', 3' $\overset{H_{2}O}{\longrightarrow}$ cytidine 3'-         cyclic phosphate $\overset{H_{2}O}{\longrightarrow}$ phosphate         HCO <sub>3</sub> <sup>-+</sup> + H <sup>+</sup> $\longrightarrow$ H <sub>2</sub> O + CO <sub>2</sub> | Reaction Catalyzed $K_M$ (mol/L)Ac-Phe-Ala $\overset{H_{2}O}{\longrightarrow}$ Ac-Phe + Ala $1.5 \times 10^{-2}$ Phe-Gly $\overset{H_{2}O}{\longrightarrow}$ Phe + Gly $3 \times 10^{-4}$ Tyrosine + tRNA $\longrightarrow$ tyrosyl-tRNA $9 \times 10^{-4}$ Cytidine 2', 3' $\overset{H_{2}O}{\longrightarrow}$ cytidine 3'-<br>phosphate $7.9 \times 10^{-3}$ HCO <sub>3</sub> <sup>-+</sup> H <sup>+</sup> $\longrightarrow$ H <sub>2</sub> O + CO <sub>2</sub> $2.6 \times 10^{-2}$ | Reaction Catalyzed $K_M (mol/L)$ $k_{cat}(s^{-1})$ Ac-Phe-Ala $K_M (mol/L)$ $k_{cat}(s^{-1})$ Ac-Phe-Ala $1.5 \times 10^{-2}$ $0.14$ Phe-Gly $3 \times 10^{-4}$ $0.5$ Tyrosine + tRNA $\longrightarrow$ tyrosyl-tRNA $9 \times 10^{-4}$ $7.6$ Cytidine 2', 3' $H_{10}^{H_0}$ cytidine 3'- $7.9 \times 10^{-3}$ $7.9 \times 10^2$ HCO <sub>3</sub> <sup>-+</sup> + H <sup>+</sup> $\longrightarrow$ H <sub>2</sub> O + CO <sub>2</sub> $2.6 \times 10^{-2}$ $4 \times 10^5$ |

## Limitations of M-M

- Some enzyme catalyzed rxns show more complex behavior E + S<->ES<->EZ<->EP<-> E + P With M-M can look only at rate limiting steps
- Often more than one substrate E+S<sub>1</sub><->ES<sub>1</sub>+S<sub>2</sub><->ES<sub>1</sub>S<sub>2</sub><->EP<sub>1</sub>P<sub>2</sub><->EP<sub>2</sub>+P<sub>1</sub><-> E+P<sub>2</sub> Must optimize one substrate then calculate kinetic parameters for the other
- 3. Assumes  $k_{-2} = 0$
- 4. Assume steady state conditions

























E + S <-> ES -> E + P E + I <-> EI Ki = [E][I]/[EI]

- Competitive
- Uncompetitive
- Non-competitive



















| Raw                | [S] (mol/L)              | Without inhibitor<br>v (µmol/min)               | With inhibitor<br>[I] = 2,2 x 10-4 M<br>y (µmol/min) |     |
|--------------------|--------------------------|-------------------------------------------------|------------------------------------------------------|-----|
| data               | 1 x 10-4                 | 28.00                                           | 17.00                                                |     |
|                    | 1,5 x 10-4               | 36.00                                           | 23.00                                                |     |
|                    | 2x 10 <sup>-4</sup>      | 43.00                                           | 29.00                                                |     |
|                    | 5x 10 <sup>-4</sup>      | 65.00                                           | 50.00                                                |     |
|                    | 7,5 x 10 <sup>-4</sup>   | 74.00                                           | 61.00                                                |     |
| Calculated<br>data | 1/[S] (M <sup>-1</sup> ) | l/v (mmol <sup>-1</sup> x min.)<br>No inhibitor | ) 1/v (mmol <sup>-1</sup> x min<br>With inhibitor    | ı.) |
|                    | 10 000                   | 0.0357                                          | 0.0588                                               |     |
|                    | 6 666.67                 | 0.0277                                          | 0.0435                                               |     |
|                    | 5 000                    | 0.0233                                          | 0.0345                                               |     |
|                    | 2 000                    | 0.0154                                          | 0.0200                                               |     |
|                    | 1 333.33                 | 0.0135                                          | 0.0164                                               |     |



